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An Investigation of the Pareto Distribution as a Model for

High Grazing Angle Clutter

Executive Summary

Clutter models are a vital tool in the validation of the performance of radar detection

schemes under controlled conditions. Complicated clutter models result in mathematical

difficulties in the determination of optimal and even suboptimal radar detection schemes.

Hence it is desirable to see whether this complexity can be minimised through the se-

lection of simpler clutter models. Recently, it was proposed that the well-known Pareto

Distribution is an acceptable model for high resolution maritime radar clutter, at low

grazing angles. This was validated through trials data, and it was found that the Pareto

Distribution perfomed comparably to other modern models of sea clutter returns, namely

the K- and KK-Distributional models.

Using the Defence Science and Technology Organisation’s Intelligence, Surveillance

and Reconnaissance Division’s Ingara Data, which is X-Band fully polarmetric high res-

olution, high grazing angle radar clutter, it is shown that the Pareto Distribution is also

an appropriate model. The importance of this discovery is that in future detection work

in support of Project AIR 7000, a simpler clutter model can be employed, facilitating the

construction of optimal and suboptimal detectors for scenarios of interest to Task 07/040.
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1 The Pareto Distribution

1.1 Background

The Pareto Distribution [1-3] is named after the Italian economist Vilfredo Pareto (15

July 1848 – 19 August 1923) [4, 5], and is a power law probability distribution that has

been found to be an excellent model of long tailed phenomena [6]. Its original application

was in the modelling of income over a population [7]. It has been used in the modelling of

actuarial data; an example is in excess of loss quotations in insurance [8]. Its usefulness as a

model for long tailed distributions has resulted in applications to a number of diverse areas

including physics, hydrology and seismology [6]. It has also found suitable applications in

engineering, such as internet teletraffic modelling. Specifically, it has found application to

the characterisation of file sizes, TCP packet inter-arrival times, FTP transfer times and

burst sizes [9]. The distribution has also found application in sonar [10] and radar [11-13]

as a model of sea clutter returns.

In terms of applications in radar, the Pareto distribution has been used to approxi-

mate the tail of a density function for determination of the likelihood ratio test for radar

detection [11]. In the context of modelling spiky sea clutter returns, [12] used the gen-

eralised Pareto Distribution to model clutter tails and designed a Constant False Alarm

Rate (CFAR) detector on the basis of this. More recently, [13] examined the application of

the generalised Pareto Distribution to the modelling of high resolution X-band radar sea

clutter, obtained at a low grazing angle. This work showed that a two-parameter Pareto

distribution fitted polarised clutter returns quite well. This distributional fit was also

compared to a number of classical radar clutter amplitude models (Lognormal, Weibull)

as well as more contemporary ones (K, KK and WW, where the latter two are mixture

distributions). It is demonstrated in [13] that the Pareto Distribution provides a better

fit to their clutter data than the traditional models and the K and WW-Distributions.

They also reported its performance is very close to that of the KK-Distribution. Since

the Pareto Distribution is characterised by a simple two parameter density function, these

results are quite promising, as remarked in [13]. To clarify why, recall the KK-Distribution

is a 4 to 5 parameter family with a complicated distribution function. The latter involves
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modified Bessel functions, making it difficult to employ in radar detection schemes. The

Pareto Distribution is amenable to mathematical analysis, and hence presents itself as an

attractive alternative to the KK-Distribution.

1.2 The Clutter Set

The sea clutter used for this report was collected by DSTO’s Intelligence, Surveillance

and Reconnaissance Division (ISRD) using their radar testbed called Ingara. This is an

X-Band fully polarised radar. The 2004 trial used to collect the data was located in the

Southern Ocean, roughly 100km south of Port Lincoln in South Australia. Details of this

trial, as well as data analysis of the sea clutter, can be found in [14-16].

The radar operated in a circular spotlight mode, so that the same patch of sea surface

was viewed at different elevation angles, as well as different azimuth angles. The radar

used a centre frequency of 10.1 GHz, with 20 µs pulse width. Additionally, the radar

operated at an altitude of 2314m for a nominal incidence angle of 50◦, and at 1353m for

70◦ incidence angle. The trial collected data at incidence angles varying from 40◦ to 80◦,

on 8 different days over an 18 day period. As in [16], we focus on data from two particular

flight test runs. These correspond to run34683 and run34690, which were collected on

16 August 2004 between 10:52am and 11:27am local time [16]. Dataset run34683 was

obtained at an incidence angle of 51.5◦, while run34690 was at 67.2◦. In terms of grazing

angles, these correspond to 38.7◦ and 22.8◦ respectively. Each of these datasets were also

processed to cover azimuth angle spans of 5◦ over the full 360◦ range. Roughly 900 pulses

were used, and 1024 range compressed samples for each pulse were produced, at a range

resolution of 0.75m.

In [16] parameter estimates for the data sets run34683 and run34690 are given, enabling

the fitting of the K- and KK-Distributions to this data. This will be employed in the

numerical analysis to follow.
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1.3 Research Objectives

The primary objective of this research is to investigate whether the same results, as

recorded in [13], apply for the case of X-Band High Resolution maritime radar sea clutter

returns obtained at a high grazing angle. Hence, the statistical objective is to assess how

well the Pareto Distribution fits such clutter, and in particular, the Ingara 2004 Trial

data. If the Pareto Distribution is a suitable model for this clutter, the construction of

optimal and suboptimal detectors for targets in high resolution high grazing angle sea

clutter would be dramatically simplified.

Section 2 introduces statistical properties of the Pareto Distribution, as well as methods

used for estimation of its parameters. Section 3 analyses the result of distributional fits

to the data, including comparative results for the K- and KK-Distributions. Included are

analyses of range profile fits as well as fits to an entire ensemble of data.

A useful reference on parameter estimation is [2], which includes both frequentist as well

as Bayesian estimation details specialised to the Pareto class of distributions. Additionally,

[8] has an excellent account of maximum likelihood parameter estimation for the Pareto

Distribution.

2 Pareto Distributional Analysis

Before analysing the Ingara data fit, the Pareto Distribution is introduced statistically,

and a number of its characteristics are given. Additionally, methods of estimating its

shape and scale parameters are discussed.

2.1 Statistical Definition and Properties

The mathematical properties of the Pareto Distribution are now given. The reader can

consult [2] and [3] for further details if required. Let α and β be positive constants. Then

a random variable X has a Pareto Distribution, written X
d
= Pa(α, β) if its density is

fX(t) =

⎧⎨⎩ 0 t < β,

αβα

tα+1 t ≥ β.
(2.1)
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Figure 2.1: Examples of the Pareto Distribution’s density. All cases use a scale parameter

of β = 2.

The parameter α is known as the distribution’s shape parameter, while β is called

the scale parameter. The latter specifies where on the real line the distribution’s support

begins, which is the interval [β,∞). The shape parameter controls how fast the distribu-

tion’s tail decreases. Figure 2.1 illustrates this graphically, for the case where the support

is [2,∞) and for α ∈ {1, 2, 10}.

Its cumulative distribution function can be derived by integrating (2.1); in particular,

it is given by

FX(t) =

⎧⎨⎩ 0 t < β

1 −
(

β
t

)α

t ≥ β.
(2.2)

The generalised Pareto Distribution is often examined in the literature, and so we

briefly examine it here, adopting the formulation in [13]. This distribution has probability

density

f(t) =
1

λ

(
1 −

ωt

λ

) 1
ω
−1

, (2.3)

where ω is called the shape parameter and λ is the scale parameter. In [13], it is pointed

out that this distribution has support 0 ≤ t < ∞ when the shape parameter is non-

positive, and 0 ≤ t ≤ λ
ω

when ω is positive. In the special case where ω = 0, the density

can be shown to limit to an Exponential Distribution’s density with mean λ. Additionally,

when ω = 1 it reduces to a uniform density on [0, λ]. As in [13], the case where ω < 0 is
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considered only, and through a very simple change of variables1 it can be shown that (2.3)

is equivalent to (2.1). MatlabTM returns parameter estimates for the Pareto Distribution

with density (2.3), and so in the distributional fitting to follow, parameters cited will be

for the density (2.3).

The existence of moments of the Pareto Distribution depends on the parameter α. In

particular, with reference to the density (2.1), the mean is

IE(X) =
αβ

α − 1
(2.4)

for α > 1, while the variance

var(X) =
β2α

(α − 1)2(α − 2)
(2.5)

exists for α > 2.

The Pareto Distribution is intimately related to the Exponential Distribution. If we

define a random variable Y = log
(

X
β

)
, then it is not difficult to show by constructing the

distribution function of Y that it has an Exponential Distribution with parameter α. This

means that a Pareto Pa(α, β) random variable is statistically equivalent to βeY , where

Y
d
= Exp(α).

The Pareto Distribution requires the estimation of two parameters in order to fit it to

a data set. This is examined in the next Subsection.

2.2 Parameter Estimation

The Pareto distribution has a power law density, and so exhibits a long tail in its distribu-

tion. Due to this fact, moment-based estimates, such as the mean and variance, are likely

to be affected. Hence, method of moments estimators are not considered appropriate for

this distributional fitting. However, maximum likelihood estimators (MLEs) for such a

distribution have useful properties, which will be demonstrated in the following. We begin

by constructing the MLE for the scale parameter.

Suppose we have a random sample of observations {x1, x2, . . . , xn}, obtained from a

common Pareto Distribution. We denote the corresponding joint random variables as

1Define α = −

1
ω

> 0 and change variables to z = t + λα.
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{X1,X2, . . . ,Xn}. Then by analysing the likelihood function of a series of independent

and identically distributed Pareto random variables, the maximum likelihood estimator of

the scale parameter can be shown to be

β̂ = x(1) = min{x1, x2, . . . , xn}. (2.6)

This result is not surprising, since it is plausible that the finite endpoint of the distribu-

tion’s support should be estimated from the smallest observation in a random sample from

the distribution.

It can also be demonstrated that the conditional distribution of the random sample

X1,X2, . . . ,Xn, conditioned on the event that the random variable X(1) = t, does not

depend on β, implying that the mimimum X(1) is a sufficient statistic for β. Furthermore,

the Pareto Distribution belongs to the exponential family of distributions, which is com-

plete. This implies that we can construct the minimum variance unbiased estimator. By

observing that IE(X(1)) = nαβ
nα−1 , we can then choose the random variable

B̂ =
(nα − 1)X(1)

nα
. (2.7)

Since this is a function of a complete sufficient statistic, it is a minimum variance unbiased

estimator for its mean, which is clearly β by construction. For large sample sizes, the

statistic B̂ is asymptotically the same as the minimum X(1), and so this can be used to

remove dependence on α in the estimator (2.7).

Next, we examine the MLE for the shape parameter. By analysing the likelihood

function, the MLE of the shape parameter α can be shown to be

α̂ =
n∑n

j=1

[
log(xj) − log(B̂)

] . (2.8)

Due to the fact that log(Xj)/B̂ is Exponentially Distributed (as remarked previously), it

can be shown that T =
∑n

j=1

[
log(Xj) − log(B̂)

]
has a Gamma Distribution with density

fT (t) =
αn

(n − 1)!
tn−1e−αt, (2.9)

and consequently it can be shown, using the properties of Gamma Distribution moments

[2], that the estimator Θ̂ = n
T

of α has moments

IE(Θ̂) =
n

n − 1
α. (2.10)
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Hence the adjusted estimator

Â =
n − 1

T
=

n − 1∑n
j=1

[
log(xj) − log(B̂)

] , (2.11)

is unbiased for α. By constructing joint conditional distributions, it can be demonstrated

that Â is a complete sufficient statistic for α, and since it is unbiased, it is also the minimum

variance unbiased estimator for α (also due to completeness as before).

Hence (2.7) can be used to estimate the scale parameter (using a large sample approx-

imation), while (2.11) is used with this to estimate the shape parameter.

3 Distributional Fitting

An analysis is now undertaken of the suitability of the Pareto model for High Grazing

Angle sea clutter. The data sets used for this purpose, as remarked previously, corre-

spond to run34683 and run34690. Specifically, the subsets designated run34683 rccal 190,

run34683 rccal 225, run34690 rccal 005 and run34690 rccal 255 are the focus. In each of

these data sets, the last numerical label refers to the azimuth angle of the radar at the

data capture instant. The analysis of data is undertaken at the range profile stage first,

followed by fitting to an entire data stream.

3.1 Preliminary Testing: Goodness of Fit Analysis

As a preliminary examination of the suitability of the Pareto model for the Ingara data,

a series of goodness of fit tests were performed on the data sets indicated above.. The

first series of tests performed were to assess whether range profiles could be modelled by

a Pareto Distribution. The range profiles exhibited correlations in time; Figure 3.1 (left

plot) shows an example of this, for the HH channel. This is from a range profile generated

from the data set run34683 rccal 225. It was decided that sequential decorrelation could

be perfomed so that a Kolmogorov-Smirnoff Goodness of Fit test [17] could be run over the

entire ensemble of data being analysed. The decorrelation was done by randomising the

samples of clutter using a randomisation of their index parameters. Figure 3.1 (right plot)

UNCLASSIFIED 7
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Figure 3.1: Range profile decorrelation: left plot shows an example of HH-Channel au-

tocovariance, and right plot shows the same result after the data has been decorrelated.

shows the result of this to the data used to produce the left range profile’s autocovariance

function.

It is important to note that the data also exhibits correlations between range profiles,

since these will correspond to returns to the radar from pulses sent at slightly different

azimuth angles, and so will reflect off overlapping patches of sea surface. Hence we do not

attempt a goodness of fit test applied to an entire data stream.

The first test was perfomed on the data set run34690 rccal 255, which contained 966

pulses for each range compressed sample. The result of the Kolmogorov-Smirnoff test

is shown in Table 3.1, which records P-values for all tests where the range profile was

rejected as being Pareto Distributed. Recall that the P-value, in simple terms, is the

probability of getting a test rejection under the hypothesis the data set is Pareto. Consult

[2] for clarification of statistical hypothesis testing. For each range profile an individual

Pareto Distribution was fitted for this testing, using MatlabTM . Each statistical test was

performed with a test size of 0.052. Table 3.1 also shows the results for both the HH and

VV polarisations. In this situation, 14 profiles were rejected out of 966 for the HH channel

data, while only 7 were rejected for the VV channel. This corresponds to rejections of

1.5% and 0.72%, which is statistically insignificant. Observe also that the P-values are

not extremely small in cases where the range profile is rejected as Pareto. Subsequent re-

running of these sequential Kolmogorov-Smirnoff tests, involving different decorrelations,

resulted in variations in these results, but on average, the same number of samples were

rejected.

2The test size is the probability of rejecting the data as Pareto, when in fact it is Pareto Distributed.
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Table 3.1: P-values for testing whether the clutter in run34690 rccal 255 is Pareto. These

are the P-values for rejected batches, showing both polarisations.

Test 1 P-Values

HH 0.0158 0.0182 0.0350 0.0397 0.0397 0.0238 0.0449

0.0238 0.0350 0.0350 0.0449 0.0271 0.0309 0.0350

VV 0.0350 0.0449 0.0158 0.0271 0.0182 0.0449 0.0120

Table 3.2: P-values associated with tests on run34690 rccal 005

Test 2 P-Values

HH 0.0120 0.0208 0.0238 0.0309 0.0309 0.0397 0.0449

0.0104 0.0449 0.0271 0.0449

VV 0.0182 0.0042 0.0104 0.0309 0.0350 0.0208 0.0350

0.0271 0.0449 0.0238 0.0138 0.0238 0.0067

The second test is for the data set run34690 rccal 005, which contains 922 pulses. Table

3.2 shows the P-values for the rejected samples. In this example, 11 (HH channel) and 13

(VV channel) range profiles were rejected respectively. Relative to the number of pulses,

this corresponds to 1.19% and 1.41% rejection rates for the two respective channels, which

is small. Again, statistical fluctuations were observed on subsequent test re-runs.

The third sequential tests were performed on the set run34683 rccal 225, which con-

sisted of 821 pulses. Table 3.3 shows both channels had the same rejection rate (0.85%).

UNCLASSIFIED 9
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Table 3.3: P-values for goodness of fit tests on run34683 rccal 225

Test 3 P-Values

HH 0.0449 0.0208 0.0397 0.0271 0.0350 0.0309 0.0120

VV 0.0238 0.0104 0.0397 0.0238 0.0309 0.0238 0.0350

Table 3.4: P-values for run34683 rccal 190

Test 4 P-Values

HH 0.0449 0.0449 0.0449 0.0271 0.0104 0.0350 0.0449

0.0309 0.0182 0.0350 0.0397 0.0271 0.0397 0.0449

0.0449 0.0077 0.0158

VV 0.0104 0.0397 0.0208 0.0449 0.0138 0.0309 0.0120

0.0397

The final data set considered was run34683 rccal 190, which consists of 832 pulses, and

Table 3.4 shows the corresponding P-values for rejected samples. Here, we see that 17 out

of 832 (2.04%) range profiles were rejected for the HH-polarised clutter, while 7 (0.84%)

were rejected for the VV channel.

3.2 Distributional Fitting: Range Profile Samples

To complement the analysis in the previous subsection, a series of range profiles are anal-

ysed graphically. In each case, a Pareto Distribution is fitted with MatlabTM using its

inbuilt MLE for the Pareto parameters. The Pareto parameters recorded in the following

correspond to those in the density (2.3). Using the results in [16], both K- and KK-

Distributions are also fitted to the data for comparison purposes.

The first example is for the range profile corresponding to the 10th pulse in

run34683 rccal 225, for the HH channel. The appropriate K-Distribution has scale param-

eter c = 40 and shape parameter ν = 4.158. The KK-Distribution has scale parameters

c1 = 35, c2 = 114.45, and the same shape parameter as for the fitted K-Distribution (fol-

lowing the modelling approach outlined in [16]). Also, the mixing parameter was chosen to

10 UNCLASSIFIED
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Figure 3.2: Range profile modelling for run34683 rccal 225 (HH channel), 10th pulse.

The figure shows empirical CDF comparisons.

be k = 0.01, as specified in [16]. MatlabTM fitted a Pareto Distribution with parameters

ω = −0.2418 and λ = 0.0088. Figure 3.2 shows plots of the empirical cumulative distribu-

tion functions (ECDFs). The first subplot in Figure 3.2 (top left) shows the ECDFs; the

top right subplot shows a magnification in the upper distribution region. The latter shows

the Pareto is a moderately good fit to the data, but asymptotically like the K-Distribution

fit. Here the KK-Distribution is a better fit in the upper tail region. The bottom left sub-

plot shows the lower tail behaviour; we see the Pareto is performing well, but still the

KK-Distribution is the best overall fit.

The second range profile considered is for the same data set used previously, but instead

we examine the VV polarised clutter. Here the K-Distribution fit has parameters c = 32

and ν = 9.629. The results in [16] state that, for this clutter set, the corresponding K-

Distributional fit has scale parameters c1 = c2, and with the same shape parameter as for
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Figure 3.3: Range profile modelling for run34683 rccal 225 (VV channel), 10th pulse

the K-Distributional fit. Hence it is exactly the same as the K-Distributional fit. This

is not entirely surprising because the KK-Distribution is a model for the spiky clutter

found in the HH-polarised channel, while the K-Distribution is still generally a good fit

for the VV-polarised channel. MatlabTM fitted a Pareto Distribution with ω = −0.040

and λ = 0.0328. Figure 3.3 shows the comparison of ECDFs. The upper tail plot (top

plot, right) shows the Pareto is better in the upper tail region. It is also good in the

lower tail region (see the subplot on bottom left in Figure 3.3), although it is close to the

K-Distributional fit.

The third range profile considered is for run34683 rccal 190, and is for a case of HH

polarised clutter. Here a K-Distribution with c = 60 and ν = 4.684 was fitted. The

KK-Distribution had parameters c1 = 55, c2 = 317.35 and k = 0.01. The same shape

parameter was used. MatlabTM fitted a Pareto Distribution with ω = −0.2605 and
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Figure 3.4: Empirical distribution functions for run34683 rccal 190 (50th pulse, HH

polarisation)

λ = 0.0045. Figure 3.4 shows the ECDF comparisons. We observe that the Pareto is quite

consistent in the upper tail region plot (top right plot in Figure 3.4), while it is not so

accurate in the lower tail region (Figure 3.4, bottom left plot).

The final range profile analysed is also for the data set run34683 rccal 190, but for the

VV channel. Here the K-Distribution has parameters c = 50 and ν = 8.556, while the

KK-Distribution has same shape parameter, but used scale parameters c1 = 48 and c2 =

129.12, and mixing parameter k = 0.01. The fitted Pareto Distribution has ω = −0.0806

and λ = 0.01441. Figure 3.5 shows the ECDF plot comparisons. The upper tail region

plot shows the Pareto Distribution fits the data rather well (top right plot in Figure 3.5).

Also, in the intermediate stage, there is good fitting (bottom right subplot in Figure 3.5).

At the lower tail region, there is a fair bit of variation in the fit (bottom left subplot in
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Figure 3.5: Empirical distribution functions for run34683 rccal 190 (50th pulse, VV

polarisation)

Figure 3.5).

The overall conclusion from the range profile fitting of distributions is that the Pareto

model seems reasonable and can perform as well as the K- and KK-Distributional fits.

It is important to note that the sample size used for each range profile is 1024, which is

insufficient to fully measure the success of a Pareto fitted model.

3.3 Distributional Fitting: Entire Data Samples

This subsection considers the fit of the Pareto distribution to an entire data stream,

corresponding to each of the four subsets of data under analysis. Each of the data sets

contains azimuth range profiles from 5◦ to 355◦, in steps of 5◦. Hence, there will be

temporal correlations across adjacent range profiles. No attempt was made to remove this
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Figure 3.6: Entire fit of run34690 rccal 255 (VV) data

in the following, instead the MLE introduced previously for the Pareto parameters were

used as an approximation.

The first example is illustrated in Figure 3.6. This has been produced from the VV

polarised data in run34690 rccal 255. The K-Distribution has parameters c = 65 and

ν = 13.059, and the results in [16] state that for a KK-Distributional fit, c1 = c2. Hence

the KK-Distribution fit is exactly the K-Distribution fit in this case. MatlabTM fitted

a Pareto Distribution with ω = −0.0629 and λ = 0.0114. Here the increased sample

size shows tighter distributional approximations. The upper tail plot (top right subplot

in Figure 3.6) shows the Pareto to perform extremely well; in the lower tail, the K-

Distribution has the best performance (bottom left subplot).

The second case considered is for the same data set but for the HH polarised clutter.

Here, the K-Distribution has parameters c = 75 and ν = 2.863. The KK-Distribution has
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Figure 3.7: Entire fit of run34690 rccal 255 (HH) data

the same shape parameter, and scale parameters are c1 = 74 and c2 = 356.68. The mixing

parameter is k = 0.01. The fitted Pareto has ω = −0.3134 and λ = 0.0015. The ECDFs

are shown in Figure 3.7, which shows the Pareto distribution fits better than the other

two models.

Example 3 is illustrated through the ECDF plots in Figure 3.8. This is for the HH

polarised clutter in run34683 rccal 190. Here the K-Distribution has c = 60 and shape

parameter ν = 4.684. The KK-Distribution has c1 = 59 and c2 = 340.43, with same

shape parameter. The mixing parameter is again k = 0.01. MatlabTM fitted a Pareto

Distribution with ω = −0.2040 and λ = 0.0043. This is another example where the Pareto

Distribution provides the best fit.

A final comparison of results is given in Figure 3.9. Here the fitting is for HH-polarised

clutter of run34690 rccal 005. The K-Distribution has parameters c = 145 and ν = 3.2.
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Figure 3.8: Comparison of ECDFs for run34683 rccal 190 (HH)
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Figure 3.9: Clutter fitting for HH-Polarised clutter of run34690 rccal 005

The KK-Distribution has scale parameters c1 = 141 and c2 = 877.02. As before, k = 0.01.

The fitted Pareto has ω = −0.2999 and λ = 0.0004. As before, the Pareto distribution

provides the best overall fit to the data.

In view of these results, we conclude that the Pareto Distribution can model the high

grazing angle clutter quite well, and seems to outperform the K and KK-Distributions in

a number of cases.

4 Conclusions

In line with the recent proposal in [13] to use the Pareto Distribution for high resolution

radar clutter, its suitability as a model for high grazing angle clutter was considered.

It was found that it replicated the reported success in [13]. Range profile fits suffered
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because of small sample sizes, but nonetheless, the Pareto Distribution fitted reasonably

well. Fitting the Pareto Distribution to an entire clutter set, which encompasses a full

360◦ scan, showed considerable success. Further tests are needed to validate these results.

Overall, it was found the Pareto fitted as well as the K-Distribution, and on larger clutter

sets, it outperfomed the KK-Distribution.

Given the relative simplicity of the Pareto clutter model, this work shows that it is pos-

sible to base the construction of detectors on this clutter model, which should facilitate the

mathematical analysis. It is probably more robust to begin with a simpler clutter model,

since suboptimal detectors will have to be introduced subsequently, and it is envisaged

these will be simpler to implement under the Pareto clutter model assumption. Current

experience has shown the KK-Distribution detectors to be quite difficult to construct [18].
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